A simulation approach to assessing environmental risk of sound exposure to marine mammals
نویسندگان
چکیده
Intense underwater sounds caused by military sonar, seismic surveys, and pile driving can harm acoustically sensitive marine mammals. Many jurisdictions require such activities to undergo marine mammal impact assessments to guide mitigation. However, the ability to assess impacts in a rigorous, quantitative way is hindered by large knowledge gaps concerning hearing ability, sensitivity, and behavioral responses to noise exposure. We describe a simulation-based framework, called SAFESIMM (Statistical Algorithms For Estimating the Sonar Influence on Marine Megafauna), that can be used to calculate the numbers of agents (animals) likely to be affected by intense underwater sounds. We illustrate the simulation framework using two species that are likely to be affected by marine renewable energy developments in UK waters: gray seal (Halichoerus grypus) and harbor porpoise (Phocoena phocoena). We investigate three sources of uncertainty: How sound energy is perceived by agents with differing hearing abilities; how agents move in response to noise (i.e., the strength and directionality of their evasive movements); and the way in which these responses may interact with longer term constraints on agent movement. The estimate of received sound exposure level (SEL) is influenced most strongly by the weighting function used to account for the specie's presumed hearing ability. Strongly directional movement away from the sound source can cause modest reductions (~5 dB) in SEL over the short term (periods of less than 10 days). Beyond 10 days, the way in which agents respond to noise exposure has little or no effect on SEL, unless their movements are constrained by natural boundaries. Most experimental studies of noise impacts have been short-term. However, data are needed on long-term effects because uncertainty about predicted SELs accumulates over time. Synthesis and applications. Simulation frameworks offer a powerful way to explore, understand, and estimate effects of cumulative sound exposure on marine mammals and to quantify associated levels of uncertainty. However, they can often require subjective decisions that have important consequences for management recommendations, and the basis for these decisions must be clearly described.
منابع مشابه
The impacts of anthropogenic sound on marine mammals in the Persian Gulf; current status and need for future research
Abstract Sound generating human activities so-called “anthropogenic sound” have increased ambient sound levels considerably in aquatic habitats that are markedly diverse in time and space. Sound generating human activities is now recognized as a potential driver of environmental changes in marine habitats. Iran has 750 km coastline along the Caspian Sea located in the north and around 2250 km ...
متن کاملAssessing underwater noise levels during pile-driving at an offshore windfarm and its potential effects on marine mammals.
Marine renewable developments have raised concerns over impacts of underwater noise on marine species, particularly from pile-driving for wind turbines. Environmental assessments typically use generic sound propagation models, but empirical tests of these models are lacking. In 2006, two 5MW wind turbines were installed off NE Scotland. The turbines were in deep (>40m) water, 25km from the Mora...
متن کاملExposure Assessment of Total Mercury: A Probabilistic-Approach Study Based on Consumption of Canned Fish
Introduction: Exposure to mercury (Hg) by consumption of fish is a recent health concern. So, it is important to evaluate the health risks related to canned fish consumption. The purpose of this study was to investigate the potential health risk based on Hg concentration in people who consumed canned fish with a probabilistic approach in Isfahan City, the central province in Iran. Materials an...
متن کاملModeling cumulative sound exposure along a seismic line to assess the risk of seismic research surveys on marine mammals in the Antarctic Treaty Area.
Zoom to upper 400 m (near-surface sound channel) Numerical modelling of sound propagation is an essential tool to assess the potential risk of air-gun shots on marine mammals and derive exposure zone radii within which certain hearing thresholds are exceeded. Here, the results of a detailed 2.5D finite-difference (FD) modelling study are presented, which takes the sound velocity profile of the ...
متن کاملThe Metabolic Costs of Sound Production in Odontocete Cetaceans
Animals often increase the amplitude (the Lombard effect), duration, and/or repetition rate of their acoustic signals as a strategy to help reduce the probability of masking from environmental sounds (NRC 2003). Although accumulating evidence from recent research (Scheifele et al. 2005, Holt et al. 2009, Parks et al. 2010) illustrates that several marine mammal species readily modify the parame...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017